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Absbmct: A sytuhes~ of a protected C-I side chain precursor (2) of ihe and-cholesieremic agenfs he 
squaiesratins and zatagozic acid A has ken achieved in 9 sleps from 1 f-buranediol. The key 
tran+wmotio~ involve a one pot odidioda-merhylemion sequncc to provide the c&unsaturoted 
al&h* 4 and subsequent asynune& a&l ma&on to inmduce tk C-4’ and C-S’ stereocenwes. 

Squalestatin-11 (zaragozic acid A)2 (1) is representative of a group of fungal metabolites that have been 

identified as inhibitors of squalene synthetase. the enzyme which catalyses the dimerisation of famesyl 

diphosphate to squalene in steroid biosynthesis. 3 These compounds possess in viva activity4 and show 

potential for use in the treatment of hypercholesteremia in humans. In an overall plan to synthesise the 

squalestatins and analogues, we envisage a convergent approach in which the anion derived from a suitably 

protected C-l sidechain precursor, such as iodide 2, is coupled to a y-&tone followed by subsequent mild acid 

promoted ring closure. In analogy to a synthesis of the C-l sidechain reported by Evan~,~ dissolving metal 

reduction would then effect removal of the benzylic oxygen and acetonide protecting group. We have recently 

described a synthetic approach to the bicyclic core in which the C-S stereocentre is set by an ester-enolate 

Claisen rearrangement conducted on a Dmannose derivative .6*7 Acid hydrolysis of a silyl ether and concomitant 

ring closure gave a bicycle in which the model sidechain utilised was an ally1 group.6 Other synthetic studies on 

the bicyclic core system have also been reporteds9Jo 
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Our approach to the required precursor 2 began with the monosilyl ether 3r1 derived from 1,Cbutanediol 

(Scheme I). Swem oxidation followed by in situ methylenationl* using Eschenmoser’s salt gave the a$- 

unsaturated aldehyde 413 in good yield after flash chromatography. An Evans aldol reaction between the 

aldehyde 4 and the boron enolate 5r4 then gave the desired 4’,5’-syn adduct 4 (d.e. 76%) along with a small 

amount of the anti isomer. 

Scheme I 
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Evidence for the stereochemical outcome of the aldol reaction rested on tH NMR studies conducted on the 

acetonide 7 derived from oxazolidinone 6 by reduction and acetonisation. The small coupling constants 

observed between Hc and HD (Figure 1) as well as between HB/HA and HC supported the syn stereochemistry 

depicted. 

Figum 1 

Coupling Constants 

JAB = 11.6HZ 

J,z,C = 2.8 Hz 

&JD = 1.8 Hz 

&C = 1.5 Hz 

Transamidationl5 of the alcohol 6 yielded the Weinreb amide 816 (Scheme II) which upon treatment with 

an excess of phenylmagnesium chloride at -78°C followed by warming to room temperature gave the 

monoadduct 9.17 It should be noted that under these conditions the reaction proceeded to completion without 

epimerisation at C-S. In contrast, epimerisation was observed when the addition of the Grignard reagent to the 

hydroxyamide 8 was conducted at O°C. Reduction of the phenyl ketone 9 followed by acetalisation gave the 

acetonide 10 as an inseparable 3:l mixture at C-6’. Desilylation of the ethers 10 then provided the alcohol 11 

(67%) and the C-6’ (22%) epimer which were easily separable by flash chromatography. The stereochemical 

assignment of the major alcohol 11 was based on the t3C NMR chemical shifts measured for the acetonide 

C(2)-methyl carbons (6 19.5 and 29.9) and the C(Z)-acetal carbon (6 99.4). These values are in agreement with 
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the expected shifts for a art-I .3-dial-acetonide. 1s Conversion of the alcohol 11 into the desired iodide 2 was 

then effected in quantitative yield by the agency of 12, PI+ and imldazole in MeCN/ether.ts 

Scheme II 
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Reduction of the mixture of acetonides 10 with lithium in liquid ammonia at -78°C cleanly provides the 

correctly functional&d sidechain 12 as previously reported.5 The iodide 2 is cumntly being utiliscd as a 

protected surrogate for the side chain of the squalestatins/zaragozic acid A and efforts toward coupling the 

derived anion with a suitable core system are currently underway. 
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